
Mesh Centered Finite
Differences

1
T IS NOT POSSIBLE TO SOLVE EXACTLY the space-time kinetics

equations at each point of spo.ce and time. Approximate

methods must be resorted to. Even simple methods based on

space and time separation, such as point kinetics method,

requires the solution of a spatial problem. This spatial solution can only

be obtained by discretisation techniques like finite differences, such as

those of chapter 8, Elementary Numerical Methods in Reactor Statics,

page 79.

It is necessary to perform such a discretisation for the space-time kinet

ics equations. The approach we take is to proceed with spatial discreti

sation first, and to keep the time derivatives out of the problem. We get

the so-called semi-discrete form of the space-time kinetics equations.

The study of different time integration schemes is then easier, and they
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will be covered in chapter 16, Time Integration ofthe Space Time Kinet

ics Equations, page 187.

We choose to derive here the Mesh Centered Finite Differences,

because it is a widely used method throughout the nuclear industry.

However the approach we take in the derivation is based on modern

nodal theory; extending the method to the analytic nodal method for

example could be done quite easily with this derivation.

Geometry and Notation

The first step is a partition of the reactor core in a number of contigu

ous rectangular pa!'allelepipeds in cartesian geometries, as discus,<ed

in chapter 6, Spatial Mesh Considerations, page 49. The nuclear prop

erties do not vary spatially within a node, but they are allowed to vary

with time.

A coordinate system origin is chosen, from which the boundaries of

each region or node can be located. The mesh widths are obtained by

taking the differences in the coordinates between these boundaries.

This is shown on Figure 9, "Coordinate System", page 163.

The parallelepiped (i,j,k) is thus the one for which:

• the x coordinates go from Xi to Xi + 1

• the y coordinates go from Yj to Yj + 1

• the z coordinates go from zk to zk + 1
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The widths of the parallelepiped (i,j,k) are thus

• in x: h~ = x· + I-x·I I I

The Yolum~ of parallelepiped (i,j,k) is then Vijk = ht· hj . hf .

FIGURE 9. Coordinate System

x
x.

I

Spatial Discretisation

163

Once the mesh has been chosen, the next step is a spatial integration of

the space-time kinetics equations on each parallelepipeds, whose

nuclear properties are spatially constant.
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We apply the operator

td~
Yj

164

to the diffusion equations (20), including the delayed precursor equa

tions. The average flux in such a region is

f
lk+ I

dz[<!>(x, y, z, t)]z.

and that of the average delayed neutron precursor concentration of

family d

Ceo ijk f
Zk + I

z. dzCe(x. Y. z, t)

164

This is like applying the theorem of Gauss to replace the space integral

of the divergence of the neutron current by surface integrals. We get for

the flux equations,
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[vj-:-kli-[;j;] VO kIJ at ijk IJ

= -([i(xi + I)]x,jk - [i(Xi)]x,jk)hth~

- - 0 k
-([J(Yj + I)]y,ik - (J(Yj)]y,ik)hihz

-([i(zk + I)]z,ij - [i(Zk)]z,ij)h~ht

- [~]!jk[;j;]ijkVijk + (1 - l3)[xP][v~rl3°k[;j;]ijkVijk
D

-,-'" d-, L [Xe]~eCeVijk
e ~ 1

and for the delayed neutron precursors,

165

(EQ 95)

We used the following the definitions for the average surface currents

- 1 fYj
+

1 fZHI

[J(xi)],.,jk == hihk Yj dy z, dz[Jx(xi, y, z, t)J
Y Z

- 1 fYj +1 fZ'+1
[J(Ai + I)]x JOk =-0-k dy dz[Jx(x j + l' y, z, t)], hJh ~ ~

Y Z

f
XI +1 fZ'+1

[i(yJo)]y ik == ~k dx dz[Jy(x, YJo, z, i)], hI h x; z,
x Z

flti + \ fl.k + \

[i(Yj + l)]y,ik == h/hk XI dx Z, dz[Jy(x, Yj + I' z, i)]
·X Z
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f
Xi. I

- 1
[J(zk)] .. == -.-. dx

Z,IJ hi hJ Xi
X Y

f
Xi. I

- 1 dJz .. ==-- X[( k+I)]Z,lJ hihi Xi

X Y

f
Y;. I

dy[JZ(x, y, Zk' til
Yj

f
Y;. I

dy[Jz(x, y, Zk + I' til
Yj

166
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The precursor equations (96) do not present any immediate problems,

given that the average fluxes and the nuclear properties of node (i,j,k)

would be known.

However, the equations for the average fluxes (95) do present a diffi

culty. Even though these equations represent the exact neutron balance

in node (i,j,k), they bring up the average currents over the six surfaces

of the node. But we do not have the relationship between these everage

currents and the average fluxes. The discretisation technique will gen

erate the sought relationships, which are approximations only, and

which are a characterization of the method. We could then eliminate

the surface currents from (95) and get a system which would involve

only the average fluxes and average delayed precursor concentrations

of the nodes.

A One-Dimensional System Within a Node

In order to eliminate any confusion with regards to the interpretation

of the various terms appearing in the finite difference formulation, we

adopt a rather complex approach in the derivation of the coupling

coefficients. It follows very closely the much more difficult derivation

of many of the modern nodal methods.
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The first step is to integrate the space time kinetics equations over two

directions at a time. This will generate a system of equations in one

dimension. The solution to this system will then provide surface cur

rents in terms of the average fluxes of neighboring nodes. By repeating

this process for each of the three directions, it will be possible to elimi

nate from (95) all the surface currents by average fluxes. We illustrate

this approach in the x direction.

Flux Equation

Let us integrate the space-time kinetics equations over the y and z

directions inside node (i,j,k). This means applying the operator

to these two equations. We get for the fluxes,
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{

Y z
1 a f j

+
1 f'+'rv]-l_.__ dy dz[<!>(x, y, z, t)]

. hJhkat Yj z,
Y Z

1 fYi +1 fZk.+'
= - hihk yjdy z,dZaax[Jx(X, y, z, t)]

Y Z

}
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f
Zk.+ I

dzCe(x, y, Z, t)z,

f
Zk.+ I

dZ~[Jz(x, y, z, t)]z, az

f
Zk.+ 1

dZ~[JyCx, y, z, t)]z, ay

f
ZIr.+ I

dzCe(x, y, z, t)
z,

168

1 fYj
+ 1

-- d'
hihk Yj Y

Y Z

1 fYj
+ 1

-- dy
hi hk YjY Z

1 fYj
+

,
fZ'+'

-[};j.·k-.- dy dz[<!>(x, y, z, t)]
IJ hJhk Yj z,

Y Z

f
YjH fZk.+1

+ (1 - l3)[xP][vlrJ:rk~k dy Z dz[q,(x, y, z, t)]
1J hJ h Yj ,

Y Z

D
1 fYj

+ 1
+ I [X~]Ae-·-k dy

e - I hJ h Yj- Y Z

and for the precursors,

1 afYj
+<

hi hkat Yj dy
Y Z

rYj + 1 fZIr.+l
= l3e~k[v};rJ:rkJ dy dz[<!>(x, y, z, t)]

hJ h IJ Yj z,
Y z

1 fYj
+

, fZk+'
->,. --.- dy dzCe(x, y, z, t)

ehJ hk Yj z,
Y z
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In order to simplify these expressions, we have to define the following

quantities:

• the transverse integrated flux,

1 fYj +, IZH
'

[<l>(x, t)],).,. == '-O--kJ dy dz[q,(x, y, z, t)]• hi h Yj z.
Y Z

• the transverse integrated precursor,

_ 1 fYj
+
1 (HI

C (x, t)"k = -,- dy J dzCe(x, y, Z, t)
e I). h) h k Yj z.

Y Z

• the transverse integrated x directed current

1 r>j +'
[Jx(x. t)]"k "" -.-.J dy

I) h)h~ Yj
Y Z

f
lk+ I

dz[Jx(x, y, Z, t)]z.

• the transverse x directed leakage along the y direction,

• the transverse x directed leakage along the z direction,

1 fYj +,
Wz(x, t)].·k == -'-k dy([Jz(x, y, zk + l' t)] - [Jy(x, y, Zk' t)])

') h) h Yj
'Y Z

• the total x directed transverse leakage
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Let us note that

170

[<!> ]ijk
1 IX.• I

= --.,. dx[<!>(x, y, Z, t)]
hi Xi

X

[J(X)]X,jk =

170

which are three of the quantities that appear in the nodal balance equa

tion.

With all these definitions, the transverse flux cquatior. (97)becomes

simply

-ld d ,
[v] dt[<!>(x, t)]ijk = - dX[JX(lI., t)]ijk - [§xtX, t)]ijk

-[I]ijk[</>(x, t)]ijk + (1 -I3HxP
j(vIr]Jk[<!>(lI., t)]ijk (EQ99)

D

+ I [X~]AcCe(X, t)ijk
c ~ 1

while the transverse precursor equations (98) becomes

In order to further simplify the underlying algebra, we eliminate the

time derivatives by introducing the exponential transform of the flux
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and of the precursors,

This permits the transformation of the precursor equations (100),

and the transverse integrated flux equation (99) becomes

-I P , a
[v] [W ]ijkl<P(X, t)]ijk = - ax[JX(X, t)]ijk - [§x(X, t)]ijk

-[~]ijk[<P(X, t)]ijk + (1 - J3)[XP][V~rlJk[<P(X, t)]ijk

D

+L

We now use the matrix definitions that we have introduced in chapter

5, Matrix Form of the Equations, page 45, to write this last equation in

the much simpler form

The matrix [OZ'] is defined in the following way
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Equation for the Currents

We still have in equation (WI), a mixture of fluxes and currents. We

nt"ed an extra relaticnship between these variables. Fick's law will pro

vide it.

Let us integrate Fick's law over the two y and z directions -in node

(i,j,k),

1 IY;+ I

- dy
hi hk Yj

Y z

1 IYj
+ I

-- dy
hihk YjY z

which gives

J
Zk+ I

dz[Jx(x. y. Z. t)].·k =
Zit IJ

I
Zk + l iJ

dz[D]iik-[<!>(x. y, z, t)]
~ ax ijk
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in terms of the variables defined in the previous section.
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Final Form of the 1-0 System

We regroup here thE' one-di'l1ensional equations (101) and (103)

slightly re-arranged,

ii
ii [<!>(x, t)] + [D]"-J'k'[Jx(x, t)] = 0
X ijk ijk

We can put all this in a single matrix system, by defining the following

vectors and matrix:

CEQ 104)

(EQ 105)

CEQ 106)

We can then write in a very compact form the fillX and current equa

tions,
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(EQI07)

174

Finite Difference Approximation

This last equation, together with identical counterpa!'ts ill the y and z

directions, constitute the starting point of many modern nodal meth

ods. We limit ourselvt:S here to the derivation of mesh centered finite

differences, which are, in effect, the nodal method oflowest order.

Transverse leakages

First, let us note that (107) is a non-homogeneous linear equation sys

tem, because of the transverse leakage term. The formally exact solu

tion of (107) will then be made from the general solution of the

homogeneous system, plus a contribution from a particular solution of

the heterogeneous system.

This non-homogeneous part can the be viewed has a perturbation act

ing on the homogeneous solution. The first hypothesis leading to finite

differences is to completely neglect this perturbation. This is the same

as supposing that the transverse leakages [lx(x, t~ are essentiaily

zero. This may seem questionable, but detailed calculations provided

by nodal methods show that these transverse leakages are quite small

compared to the fluxes. Their effect are more important in regions

where th.e fluxes are highly non-separable, like in corners near the fuel

reflector areas for example. Furthermore, the zero transverse leakage

approx.il'nation is compatible with the other hypotheses leading to the
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mesh centered finite differences, particularly with the truncation of the

ID2.trix exponentials, which is the subject of the next section.

Solution of the Homogeneous System

The homogeneous version of (107) is

and the solution of this can be written fcrmally as

where the [A] vector is arbitrary. and depends on the initial values

that we use for [$(x, t>ljk'

Ifwe choose for initial value of [tJs(x, t>] ijk the value it has at x = xi'

we will have

and then

so that
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\

If, on the other hand, we choose as initial value of the flux on thc other

side of the node, [1\I(x, t~ ijk has for value at x == xi + I' we will have

and then

so that

(F.Q 109)

Exponential Matrix Expansion

The fundamental hypothesis leading to the mesh centered finite differ

ence approximation is that the matrix exponential found (l08) and

(109) can be truncated to low order terms in their expansions. In other

words,

(£Q 110)
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and
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Note that these expansions imply a linear variation of the fluxes and

the currents within each of the (i,j,k) nodes. This is a good indication

that the finite differences are not a solution of the true diffusion equa

tions. Locally, we have linear variations which do not represent the

true intra-node shapes of the fluxes and the currents. We can only

hope that the diffusion equations are better approximated when only

the node averaged quantities are involved.

Relationship Between Average Fluxes and Currents

As we have seen previously, the problem that we have to solve is the

determination of a relationship between the nodal average fluxes and

the average currents over the surfaces that bound the node. The finite

difference approximation gives rise to such a relationship.

To get the relationship, we integrate (llO)and (I 11) over the x direc

tion, and divide by the width h~ of node (i,j,kl.

Integration with IjI(Xj)

We find, after integration,

But the vector [iii(tl] ijk is made from fluxes and currents. Let us write

the first portion of this vector, the flux portion. We have
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Thus,

but by the definition of the matrix [N] ,equation (106),

{EQ In)

178

We see that the finite difference approximation does not involve the

[k~ matrix. This makes the method particularly simple, since we do

not have to take into account the exponential transforms in the cou

pIing coefficients. The mesh centered finite differences do not take into

account the kinetic distortion terms.

Integration with ljJ(xi+l)

We have, after integration,

Once again, the vector is made of both !tuxes and currents. Writing the

first portion of the vector gives
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[;)i(t)l,ijk = [iI[ljJ(Xi,t)Lijk + h;[N]II,ijJ·/J(Xi+l,tlijk

hi

+ ; [N] 12,ij JIjJ(Xi + I' t~2,ijk

Thus,

We rewrite this last expression for node (i-l,j,k), and we have

Relationship Between Average Fluxes and Currents

We now take the difference between (112) and (113). We find

[;j;ljk - [;j;1- Ijk = [4>(xi, t~ijk - [4>(xi, t)ljk

hi -1 hi-I

- ; [Dljk [JX(Xi' t~ iik + T [D]i-~ Ijk ~X(Xi' t~ i _ ljk

By the continuity of the 1nx, the first two terms in this equation anni

hilate each other. By the current continuity, the two currents are the

same. Thus, we get

-hi -I hi-I

[-1 _[-1 =-l~r::1 +_x [:1-1 )[J( )14>J ijk 4>J i - Ijk 2 LDJ ijk 2 DJ i - Ijk x Xi' t ~ ijk

and finally
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which at last gives us the sought relationship between the average sur

face currents and the average fluxes of the two nodes surrounding the

interfaces.

An identical calculation performed on node (i+1,j,k) would give the

expression

Coupling Coefficients

In the preceding section, we have found a relationship between the

node average fluxes and currents in the x direction. Similar calcula

tions could be made in the other two directions, which would give rise

to the following relationships:

X Direction

and
. -I

rJx(xi+I,t)l"=krh~+lrDl.-1 . + h~rDI")1 ([(j)I.+I'k - r(j)l"k't ~1.11:.., '1.4-1,1.- .., .,1.- \ ~1 J ~~lJ~
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Y Direction

181

and

r -I

[ ~ j + 1 j ~ ([ J [")J . t = hy -I _ hy -I - - -
_/YJ + I' ) ijk l-2- [olj + Ik ~"2 [oljk <P ij + Ik <j>J ijk

Z Di rec:tion

r ]
-1

hk hk-I .
J t) = z -I z -I - --

[.(Zk' ~ijk "2 [oljk + -2- [oljk _1 ([<j>Jijk l<j>Jijk - 1)

Flux Equation

Finally, we substitute these expressions in the nodal balance equation

(95), to get
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D

- ['l]ijl.[;i>ljkVjjk + (1- ~)~pJ ["k~~k[4>LkVijk+ e~1 [X~J~eCeVijk
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Precursor Equations

Precursor Eql!ations

The precursor equations is given by equation (96),

183

(EQ 115)

Boundary Conditions

When a node (i,j,k) encompasses a boulidary surface, the expressioli

for the coupling coefficient will be different from those of centrally

located nodes. First, we set the coupling to quantities that are outside

the domain to O. We then have to find ~xpressions that relate surface

currents to the node average fluxes. We must go back to equations

(112) and (113) and to substitute the desired relationship between Ll.e

fluxes and currents, for example by using albedos. The resulting

expression is the substituted in the nodal balance equation of node

(i,j,k). The case of zero current is even easier to take care of, since we

only have to substitute J = 0 on the appropriate surface, which can

be done directly in the nodal balance equation.

Matrix Formulation

We can now express the system of equations for the average fluxes

(114) and for the average precursor concentrations (115) in matrix

form.We use the following numbering scheme: the fluxes are num

bered according to the position index first, and according to group
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index second. We thus have G blocks of N (=1 X J X K) elements

each. We also include D blocks of N precursor values. Therefore, we

define a vector containing the following components:

The semi-discrete system of the space-time kinetics equations is then

written

(EQ 116)

184

where the inverse of the diagonal matrix contammg the volumes

divided by the velocities for the flux part and ones for the precursor

parts has multiplied the matrix containing the coupling coeffi··
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cients.The resulting matrix has the structure illustrated Figure 10, "H

Matrix Structure", page 185.

FIGURE 10. H-Matrix Structure
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